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Acoustic-driven delta rhythms as prosodic markers
Oded Ghitza

Department of Biomedical Engineering & Hearing Research Center, Boston University, Boston, MA, USA

ABSTRACT
Oscillation-based models of speech perception postulate a cortical computation principle by which
decoding is performed within a time-varying window structure, synchronised with the input on
multiple time scales. The windows are generated by a segmentation process, implemented by a
cascade of oscillators. This paper tests the hypothesis that prosodic segmentation is driven by a
“flexible” (in contrast to autonomous, “rigid”) oscillator in the delta range (0.5–3 Hz) by tracking
prosodic rhythms, such that intelligibility is impaired when the ability of this oscillator to
synchronise to these rhythms is impaired. In setting phrasal boundaries, both bottom-up
acoustic-driven and top-down context-invoked processes interact in a manner that is difficult to
decompose. The present experiments used context-free random-digit strings in order to focus
exclusively on bottom-up processes. Two experiments are reported. Listeners performed a target
identification task, listening to stimuli with prescribed chunking patterns (Experiment I) or
chunking rates (Experiment II), followed by a target. Irrespective of the chunking pattern,
performance is high only for targets inside of a chunk, pointing to the benefit of acoustic
prosodic segmentation in digit retrieval. Importantly, performance remains high as long as the
chunking rate is within the frequency range of neuronal delta, but sharply deteriorates for higher
rates. This data provides psychophysical evidence for the role of acoustic-driven segmentation,
with flexible delta oscillations at the core, in digit retrieval.
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1. Introduction

In written text, spaces and punctuation rules are used to
divide words and define phrase boundaries. In contrast,
naturally spoken language is a stream of connected
sounds. Embedded in the acoustic stream is information
analogous to spaces and punctuation rules (e.g. intona-
tion, stress, pauses), termed “accentuation”, that is used
by the listener to mark the boundaries of speech frag-
ments associated with linguistic units. The marking is
obtained by segmentation – a process by which the
input signal is partitioned into temporal segments that
are ultimately linked to a variety of linguistic levels of
abstraction, ranging from phonetic segments to syllables
to words and, ultimately, prosodic phrases. The segmenta-
tion process works on intervals associated with syllables
(50–250ms), termed here Syllabic Segmentation, and on
the phrasal level (0.5–2 s), termed Prosodic Segmentation.
Only after the signal has been segmented can effective
decoding proceed. If the signal is incorrectly segmented,
it is more difficult to form a match with internal linguistic
patterns associated with syllables, words and phrases.

Before proceeding further a note on terminology is in
order. In the context of perceptual prosodic segmenta-
tion, the term chunking is often used. Unfortunately,

this term is also used in the context of speech synthesis,
to describe how acoustic chunks are produced. To avoid
ambiguity, we shall use chunking for synthesis and seg-
mentation for perception. Hence, Chunking refers to the
process, executed by machine, of grouping acoustic
items that are short in duration (e.g. phones, syllables,
words) into one acoustic item (a chunk) – an operation
that has nothing to do with perception. Segmentation
is a cortical operation that results in an internal, temporal
partitioning of the acoustic stream. Following this termi-
nology, chunking results in acoustic chunks while seg-
mentation guides a decoding process that results in
chunk-objects. (See Glossary table, Table 1.)

Turning to prosodic segmentation, this cortical
process arises from the need to buffer the linguistic
units carried by the acoustic stream into short-term
memory (STM, e.g. Baddeley, 2010), a storage limited in
capacity (measured in number of items per second).
This limit implies that in order to maintain high perform-
ance, the incoming stream must be segmented into
chunk-objects so that the rate of chunk-objects will not
overwhelm the buffer store capacity. The prosodic seg-
mentation process only marks the boundaries of tem-
poral chunks that are likely candidates for a match with
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what is stored in long-term memory (LTM). The linguistic
identity of the chunk – the chunk-object – is obtained by
decoding processes operating at phonetic, syllabic,
lexical and phrasal levels. Pointing to yet another unfor-
tunate terminology, note that this chunk-object – the
internal representation of a chunk, stored as an item in
STM – is different from chunk-objects obtained by
“recording”, a fundamental concept introduced by
Miller (1956), according to which a sequence of STM
items can be learned if they are contextually recorded
into chunk-objects before stored in LTM. Recording is
beyond the scope of this study.

Miller was also concerned with identifying the
decision units in perception of speech. In discussing
the decision-making process in ordinary conversation
he wrote (Miller, 1962):

The assumption … is that people have available a rela-
tively slow, single-channel mechanism for making
decisions, so that it is necessary to store some of the
input information and to process it as a unit. Decisions,
therefore, occur at discrete points in time and serve to
mark the boundaries for the units involved.

He then suggested:

Perhaps we make about one decision per second in
ordinary listening. If we accept this as a rough estimate,
it is suggested that the phrase – usually about two or
three words at a time – is probably the natural decision
unit for speech.

According to Miller, speech understanding is the
result of delayed decisions over some “decision unit”
that is multi-item in duration (about 1-sec long).

Interestingly, the duration of the decision unit suggested
by Miller (1962) – about 1 second – coincides with Pickett
and Pollack’s (1963) assertion that in read passages, and
in ordinary conversation, a window of at least 1 second is
required to reliably decode words, irrespective of the
number of words presented. What makes a 1-sec-long
window so special?

It is a commonplace observation that, in spoken word
retrieval tasks, recall is improved when the material to be
remembered is in some way organised or grouped in
chunks. (This is why telephone numbers are typically
grouped into 2, 3 digit chunks. Interestingly, chunking
patterns vary across countries.) For example,
Ryan (1969) studied several means of chunking – tem-
poral, rhythmic, spatial – and reported an improvement
in recall with grouping. The extent of this improvement
depends on the size of the groups: when listening to
digit strings, grouping into chunks of about three items
each is most helpful (e.g. Chen & Cowan, 2005; Gilbert,
Boucher, & Jemel, 2014, 2015; Maybery, Permentier, &
Jones, 2002; Reeves, Schauder, & Morris, 2000;
Ryan, 1969; Wickelgren, 1964).

And recently, neuroimaging evidence for neuronal
activity associated with prosodic segmentation of
spoken material has been found (e.g. Boucher, 2006;
Buiatti, Peña, & Dehaene-Lambertz, 2009; Gilbert
et al., 2014, 2015). EEG data showed that temporal group-
ings affect amplitude changes in N400 and P300 waves
in a way that coincides with chunk-by-chunk segmenta-
tion (Gilbert et al., 2014). In a subsequent study they
demonstrated that Positive Shifts in evoked potentials
– which reflect neural responses to acoustic cues

Table 1. Glossary table.
Chunking A process, executed by machine, of grouping acoustic items that are short in duration (e.g. phones, syllables, words) into one

acoustic item (a chunk); an operation that has nothing to do with perception.
Segmentation A bottom-up cortical operation, which sets a time-varying window structure synchronised to the input that results in an internal,

temporal partitioning of the acoustic stream.
Parsing A top-down cortical operation, which refers to the exhaustive division of the incoming speech signal into linguistic constituents

using their syntactic roles (as part of the decoding process).

Chunk An acoustic speech fragment generated by chunking.
Chunk-object An internal representation of a chunk, generated by the decoding process which, in turn, is guided by segmentation and parsing.

Flexible oscillators Capable of tracking syllabic irregularities – for example, a stress syllable followed by a non-stressed syllable (the theta range) – or
slowly varying phrase irregularities (the delta range). In contrast to autonomous, “rigid” oscillators.

Acoustic-driven oscillators Driven by sensory-input rhythms.
Context-driven oscillators Driven by temporal regularities in past linguistic content.

Root strings 100 text strings – 10-digits long each – generated at random to form the root vocabulary of digit strings. Each experimental stimulus
in this study is originated in one of the root strings. See Section 3.2.

Core stimuli A vocabulary of “Lego” acoustic speech segments, from which the stimuli presented to the listeners are synthesised (by
concatenation). See Section 3.2.

Chunking pattern Digit strings are grouped into chunks – a chunk being multi-digit – with a prescribed chunking pattern. The sequence 3762895069
can be chunked into the regular chunking pattern [37 62 89 50 69], or into the irregular pattern [376 289 50 69]. See Section 4.1.1.

Chunking rate The number of chunks per second, in Hz. See a rigorous definition in Section 4.2.1.
Prosody mode For a prescribed root string and a prescribed chunking pattern two 10-digit long stimuli are synthesised, one for each of two prosody

modes, Gapped and Accentuated. See a rigorous definition in Section 4.1.1.
Accentuation Information embedded in the acoustic stream (e.g. intonation, stress, pauses) – analogous to spaces and punctuation marks in text –

that is used by the listener to mark the boundaries of speech fragments associated with linguistic units.
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arching over a group – are evoked by chunks marked by
lengthening of final elements, on a chunk-by-chunk basis
(Gilbert et al., 2015). Interestingly, a preferential response
is recorded for chunks that are 3 items long, in accord-
ance with the behavioural data noted above. What is
the underlying cortical computation principle at the
origin of superior performance for a grouping of about
three items – roughly 1-sec long in duration?

Segmentation, prosodic and syllabic, is associated
with distinct properties of the auditory response to the
acoustic signal. The temporal fluctuations of the cochlear
critical-band envelopes span two distinct time scales,
one associated with slow modulations (i.e. < 3 Hz) and
pertains to the prosodic stress patterns, and the other
associated with faster modulations (3–20 Hz) and per-
tains to syllabic patterns. The faster scale conveys acous-
tic features important for decoding individual phonetic
segments within a syllable. The slower scale conveys
information on accentuations (e.g. intonation, stress,
pauses) arching over linguistically related syllables and
words, grouped into higher-level units associated with
phrases.

As previously noted (e.g. Ghitza, 2011; Poeppel, 2003),
there is a remarkable correspondence between average
durations of speech units, on the one hand, and frequency
bands of neuronal oscillations, on the other. Phonetic fea-
tures (duration of 20–50ms) are associated with beta
(15–30 Hz) and gamma (>30 Hz) oscillations, syllables
and words (mean duration of about 250ms) with theta
oscillations (3–9 Hz), and sequences of syllables and
words embedded within a prosodic phrase (300–1500
ms) with delta oscillations (<3 Hz). Driven by this corre-
spondence, it was proposed that neuronal oscillations
play an important role in speech perception. A cortical
computation principle was postulated, by which decoding
is performed within a time-varying window structure,
synchronised with the input on multiple time scales. The
windows are generated by a segmentation process,
implemented by a cascade of oscillators. In order to stay
in sync with the quasi-regular rhythmicity of speech, a
special class of oscillators is required – for example, the
voltage-controlled-oscillator in a phase-lock-loop mechan-
ism (e.g. Ahissar, Haidarliu, & Zacksenhouse, 1997;
Viterbi, 1966; Zacksenhouse & Ahissar, 2006). Such oscil-
lators are termed here flexible oscillators, in contrast to
autonomous, rigid oscillators.

Syllabic segmentation pertains to speech fragments
that are multi-phone in duration. Recent oscillation-
based models of speech perception (e.g. Ahissar &
Ahissar, 2005; Ding & Simon, 2009; Ghitza, 2011; Ghitza
& Greenberg, 2009; Giraud & Poeppel, 2012; Hyafil, Fonto-
lan, Kabdebon, Gutkin, & Giraud, 2015; Lakatos et al., 2005;
Peelle & Davis, 2012; Poeppel, 2003) propose that syllabic

segmentation takes place in the pre-lexical layers, with
processing time scales in the theta range. These models
proved to be capable of explaining a range of counterin-
tuitive psychophysical data (e.g. Ghitza, 2012, 2014; Ghitza
& Greenberg, 2009) that are hard to explain by conven-
tional models of speech perception. A computational
model, TEMPO, which epitomises this computational prin-
ciple is reviewed in Section 2.1.

Prosodic segmentation, which pertains to sequences
of words associated with prosodic events, occur in
higher cortical layers with processing time scales in the
delta range. In setting phrasal boundaries, two distinct
processes are at play, the contribution of each is hard
to isolate: a bottom-up, acoustic-driven segmentation
and a top-down, context-invoked parsing (acoustic pro-
sodic segmentation and contextual parsing from here
on). Cortical oscillations may be involved in the neuronal
implementation of these processes. Hence, acoustic-
driven delta oscillations may drive acoustic prosodic seg-
mentation, while context-invoked delta oscillations may
drive contextual parsing (e.g. Ding, Melloni, Zhang,
Tian, & Poeppel, 2015). We distinguish between segmen-
tation and parsing: the term segmentation refers to the
function of setting a time-varying window – roughly 1-
sec long – synchronised to the input, resulting in tem-
poral partitioning of the acoustic stream. The term
parsing refers to the exhaustive division of the incoming
speech signal into refined candidate constituents using
their syntactic roles (as part of the decoding process).
In our view, acoustic prosodic segmentation and contex-
tual parsing interact, with segmentation precedes
parsing. The linguistic content – which drives the
context-invoked delta – is provided by a decoding
process guided by a flexible acoustic-driven delta, in
the form of candidate linguistic constituents. Follows is
a process guided by context-driven delta, which refines
the division of the incoming speech signal.

The present study focuses exclusively on the cortical
function that executes acoustic prosodic segmentation.
In particular, we propose to generalise the cortical com-
putation principle epitomised in the syllable level – that a
(syllabic) segmentation process guides the syllable
decoding process – to the chunk level, where a chunk
is a speech fragment that is multi-word in duration. We
hypothesise that acoustic prosodic segmentation
guides the phrase decoding process, using a flexible
delta oscillator playing a role analogous to the flexible
theta oscillator in syllabic segmentation.

To test this hypothesis we conducted two psycho-
physical experiments with four questions in mind:

(1) Does acoustic prosodic segmentation play a role in
word retrieval? To separate the role of acoustic
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segmentation from that of contextual parsing, a
context-free random-digit strings were used (to elim-
inate contextual effects).

(2) Does the chunking strategy – how elements are
grouped into chunks – play a role in digit retrieval?
(For example, why do Americans chunk a 10-digit tel-
ephone number into groups of 3322? and why, in
Europe, some use a chunking pattern of 22222?)

(3) Are hidden prosody cues – for example, accentua-
tions arching over a chunk – as effective as explicit
temporal grouping (by gap insertions in between
the chunks)?

(4) Is acoustic prosodic segmentation driven by a delta
oscillator?

In both experiments, an adapted Sternberg task was
used (1966). Listeners heard 10-digit utterances with
different chunking patterns and prosody modes, fol-
lowed by 2- or 3-digit-long targets, and were asked to
indicate whether or not the target was part of the pre-
ceded utterance. The task is suitable for probing the
interaction between segmentation and decoding in a
memory retrieval task. This is so because a successful
yes/no decision depends on how accurately the digit
chunks are remembered, which in turn depends upon
how accurately they are decoded, which depends on
their correct segmentation.

Experiment I (Section 4.1) addresses the first three
questions. Error rate was measured as a function of
chunking pattern and prosodic mode. Chunking rate
was inside the cortical delta frequency range for all
chunking patterns considered, eliminating the chunking
rate as a factor. As we shall see, similar error patterns
emerge for all chunking patterns considered, indicating
that – as long as the chunking rate is inside the cortical
delta range – chunking strategy is not an important
factor. Similar error patterns also emerge for the two
prosody modes used for chunking, indicating that
(natural) accentuation is as effective as gap insertions
in enabling effective segmentation.

Experiment II (Section 4.2) addresses the fourth ques-
tion. The role of cortical deltawas tested by driving chunk-
ing rate from inside to outside of the cortical delta range.
The experimental paradigm was the same as in Exper-
iment I. The 10-digit utterances were chunked with pre-
scribed chunking rates, and performance was measured
as a function of the rate. As we shall see, performance
remains high as long as the chunking rate is inside the fre-
quency range of neuronal delta and it sharply deteriorates
once the chunking rate is higher than the upper limit of
delta, indicating a possible role of delta in acoustic proso-
dic parsing.

The remainder of the paper is organised as follows.
The oscillation-based model is outlined in Section 2.
Section 3 describes the experimental design, the core
of the speech corpus,1 the experimental paradigm and
the data analysis methodology. The stimuli preparation
and the results are described in Section 4. Finally, the
interpretation of the data is discussed in Section 5
through the prism of oscillation-based models.

2. Segmentation with nested oscillations

We are concerned with the cortical function that exe-
cutes segmentation of everyday speech (i.e. speech
uttered in a continuous, natural way). With this focus in
mind, the remainder of the paper adheres to a particular
partitioning of the auditory system, driven by function:

Definition: The auditory channel includes all pre-lexical
layers, with acoustic waveforms as input and syllable
objects as output.

Corollary: The first layer of the cortical receiver is the
lexical recognition circuitry (i.e. syllable objects as input
and words as output).

Such a partitioning stems from the postulation that,
when engaging in a spoken dialog, the smallest linguis-
ticallymeaningful units arewords (e.g. Cutler, 1994, 2012).
According to this partition, the auditory channel includes
all layers of the auditory periphery and the pre-lexical cir-
cuitry of TEMPO (black box in Figure 1). Syllabification
takes place in the auditory channel, guided by a flexible
oscillatory array with theta as the master, locked to the
input rhythm. The sequence of output syllabic units
(in the form of vowel – consonant-cluster – vowel, or
VCV) is integrated into words and word sequences by a
process that takes place in the cortical receiver, guided
by delta oscillators.

One remark is worthy to note. Everyday speech is
quasi-regular by nature in both the syllabic and the
phrasal time scales.2 In order to be able to stay in sync
with this quasi-regular rhythmicity, the segmentation
path of TEMPO is implemented by a special class of oscil-
lators termed flexible oscillators. (Such oscillators are
different in important respects from autonomous, rigid
oscillators.) We argue that syllabic segmentation, accu-
rate enough for a reliable decoding of pre-lexical units,
can only be achieved by a flexible theta oscillator
capable of tracking the syllabic irregularities (e.g. a
stress syllable followed by a non-stressed syllable). Simi-
larly, prosodic segmentation, accurate enough for a
reliable decoding of phrases, can be achieved by a flex-
ible delta oscillator capable of tracking slowly varying
phrase irregularities.
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2.1. Syllabic segmentation steered by flexible
theta

The black box within Figure 1 depicts the pre-lexical
TEMPO, a oscillation-based model of the auditory
channel (Ghitza, 2011). Conventional models of speech
perception (up through the word level) assume a decod-
ing of the acoustic signal by linking phonetic, syllabic,
lexical and phrasal tokens in the auditory input with
stored memory patterns (e.g. Luce & McLennan, 2005;
Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 1978;
Stevens, 2005). These models have been shown to be
incomplete. For example, they have a difficulty explaining
the intricate pattern of human performance as a function
of speech-speed and repackaging.3 Such data can be
accounted for by TEMPO, a model which epitomises
recently proposed oscillation-based models of speech
perception (e.g. Ahissar & Ahissar, 2005; Ding &
Simon, 2009; Ghitza & Greenberg, 2009; Giraud &
Poeppel, 2012; Hyafil et al., 2015; Lakatos et al., 2005;
Peelle & Davis, 2012; Poeppel, 2003). The cortical compu-
tation principle at the core of TEMPO is that the speech

decoding process is performed within a time-varying,
hierarchical window structure synchronised with the
input, on multiple time scales. The window structure is
generated by a segmentation path, implemented by a
cascade of flexible oscillations with theta as “master”,
capable of tracking the input pseudo-rhythm.4 A success-
ful tracking can only be maintained if the input rhythm is
within the theta frequency band. The frequencies and
intra-phase configuration of the oscillators in the array
determine the segmentation process. At the end of
each theta cycle TEMPO outputs a VCV object, termed a
theta-syllable.5

TEMPO is capable of explaining a variety of psycho-
physical and neuroimaging data difficult to explain by
current models of speech perception, but emerging
naturally from the architecture of the model (e.g. Doel-
ling, Arnal, Ghitza, & Poeppel, 2014; Ghitza, 2012, 2014;
Ghitza & Greenberg, 2009). The key properties that
enable such accountability are: (i) the capability of the
theta oscillator – and hence the entire array – to track
and stay locked to the input syllabic rhythm, and (ii)
the cascaded nature of the oscillators within the array.

Figure 1. A block diagram of the TEMPO model. It comprises a decoding and a segmentation paths that process the sensory stream
generated by a model of the auditory periphery. The decoding process (in orange) links chunks of sensory input of different durations
with stored linguistic memory patterns, and it conforms to conventional models of speech perception. The segmentation path (in blue)
generates a hierarchical window structure synchronised with the input, implemented by an array of cascaded oscillators locked to the
input rhythm. The oscillators are assumed to be flexible, capable of tracking the slowly varying input rhythm. The instantaneous fre-
quencies and relative phases of the oscillations determine the location and duration of the temporal windows that control the decoding
process. The theta oscillator guides the decoding of pre-lexical VCV objects, and the sequence of VCV objects is integrated to form a
delta-cycle-long phrases. The decoding process in pre-lexical TEMPO is performed during the theta cycle and a VCV object is emitted at
the end of that cycle. The decoding at the phrase level is by integrating the VCV objects over the delta cycle, and a phrase is emitted at
the end of that cycle. The segmentation path plays a crucial role in explaining the data by Ghitza and Greenberg (2009) and
Ghitza (2014).
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The tracking capability of the array maintains a match
between the amount of information in the input
stream (in terms of the number of syllables per unit
time) and the capacity of the auditory channel (in
terms of a reliable information transfer of VCV objects
per unit time).6 Intelligibility remains high as long as
theta is in sync with the input (as is the case for moderate
speech speeds) and it sharply deteriorates once theta is
out of sync (when the input syllabic rate is outside the
theta frequency range).

2.2. Acoustic prosodic segmentation steered by
flexible delta

In the present study, the cortical computation principle in
play at the auditory channel is generalised to the cortical
receiver. Brain’s delta oscillations are hypothesised to be
linked to chunks – multi-word in duration, analogous to
the way neuronal theta oscillations are linked to VCV seg-
ments – multi-phone in duration. As shown in Figure 1,
the VCV objects – the auditory channel output – are inte-
grated to form words and phrases, guided by a prosodic
segmentation process. The integration takes place
during a temporal window that is one delta-cycle long.
Intelligibility remains high as long as the delta cycles are
aligned with chunks; this is so as long as the flexible
delta oscillator is in sync with the chunk rhythm.

Two remarks are noteworthy. First, in analogy to the
decoding process in pre-lexical TEMPO – where decod-
ing is performed during the theta cycle and a VCV
object is emitted at the end of that cycle – the decoding
at the phrase level is by integrating the VCV objects over
the delta cycle; a phrase is emitted at the end of that
cycle. Second, given that decoding at the cortical recei-
ver utilises information carried by linguistic structure, a
contextual parsing driven by temporal regularities in
past linguistic content – captured by a context-invoked
delta – is also envisioned. Examining the possible role
of context-invoked delta in contextual parsing, and the
interaction between acoustic segmentation and contex-
tual parsing, are beyond the scope of this study.

3. Methods

3.1. Experimental design overview

The hypothesised role of acoustic delta segmentation in
decoding speech should ultimately be validated with
experiments using continuous speech without linguistic
constraints. Using such material, however, will result in
contaminated data because of the difficulty to dis-
tinguish between bottom-up, acoustic segmentation
and top-down, contextual parsing. Therefore, the

present experiments used context-free random-digit
strings – 10 digits long – in order to focus exclusively
on bottom-up processes. The digit strings to be pre-
sented were grouped into chunks – a chunk being
multi-digit in duration.

Two experiments were conducted. In Experiment I,
the digit strings were chunked to a prescribed chunking
pattern. For example, the sequence 3762895069 can be
chunked into the regular chunking pattern [37 62 89
50 69], or into the irregular pattern [376 289 50 69].
Two chunking procedures were used, each characterised
by a prosody mode – gapped or accentuated. In Exper-
iment II, the chunking rate of a digit string was con-
trolled, to be inside, or outside of the cortical delta
frequency band (about 0.5–3 Hz). Note that these chunk-
ing operations only introduces a prescribed temporal
structure, without any contextual advantage.

Error ratewasmeasuredusinga retrieval task in the form
of an adapted Sternberg target identification task (target ID
task from here on): listeners heard a 10-digit stimulus fol-
lowed by a 2- or a 3-digit long target, and were asked to
indicate whether or not the target was part of the preced-
ing utterance. Three target positions were considered: (i)
target inside a chunk, (ii) target splitbetween two successive
chunks, and (iii) no target present in the 10-digit string. The
task is suitable for probing the role of acoustic prosodic
segmentation in a memory retrieval task. This is so
because a successful yes/no decision depends on how
accurately the digit chunks are remembered, which in
turn depends upon how accurately they are decoded,
which depends on their correct segmentation.

In Experiment I (Section 4.1), error rate was measured
as a function target position (inside, split and none), with
chunking pattern and prosody mode (gapped or accentu-
ated) as the parameters, and while listening to stimuli in
a normal speed (see Section 4.1.1 for the stimulus prep-
aration details). A large error rate in the target-split con-
dition, compared to that in the target-inside condition,
will demonstrate the benefit of accurate acoustic proso-
dic segmentation (in the chunk level) in word retrieval.
Such data, however, will not provide any evidence for
the possible role of acoustic delta oscillations in prosodic
segmentation.

In Experiment II (Section 4.2), error rate was measured
with chunking rate the parameter. In particular, one of
the target positions, the target-inside condition (where
the target is always inside the chunk), provides an
insight into the possible role of acoustic delta oscil-
lations: a jump in error rate for chunking rates greater
than the upper bound of the delta frequency-band
(about 3 Hz) will support our hypothesis that a necessary
condition for good performance is a successful synchro-
nisation between the input and the delta oscillator.
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3.2. Root strings and core stimuli

The 10-digit long stimuli were synthesised as follows.
First, 100 text strings – 10-digits long each – were gener-
ated at random to form the root vocabulary of digit
strings. These strings, termed root strings, are semanti-
cally unpredictable but of low perplexity (a vocabulary
of 11 words, 0 to 9 and O). Using the AT&T Text-to-
Speech System,7 with the female speaker Crystal, a
bank of core stimuli was generated, populated with the
following high quality, naturally accentuated stimuli:

(1) One stimulus for each single-digit (0 to 9, and O).
(2) One stimulus for each doublet of digits that exists in

the entire set of root strings.
(3) One stimulus for each triplet, quartet, and quintet of

digits.

To synthesise a particular 10-digit stimulus, the
sequence of core stimuli – defined by the prescribed
chunking pattern – was concatenated, as described in
Section 4.1.1.

3.3. Experimental stimuli

Experiment I and Experiment II were conducted separ-
ately. The signal processing used to generate the
10-digit long stimuli unique to each experiment are
detailed in Sections 4.1.1 and 4.2.1. For every condition,
20 root strings (out of the total number of 100) were ran-
domly selected. For each experiment, all stimuli–across
all conditions–were scrambled, and the resulting pool
of stimuli was divided into bundles, 65 stimuli per
bundle. The 65 stimuli (in a bundle) were concatenated
in the following sequence, to be presented to the lis-
tener: [alert tone] [1-sec long silent gap] [digit string]
[1-sec long silent gap] [target] [3-sec long silent gap]
[alert tone] [1-sec long silent gap] [digit string]…, result-
ing in one concatenated audio clip, about 8-minutes
long. Same bundles were presented to all subjects (i.e.
per condition, all subjects heard the same 20 stimuli).

3.4. Subjects

All listeners, 18 in number, were young adults (college stu-
dents), educated in the USA (English as first language),
with normal hearing (screened for normal threshold
audiograms). Nine listeners (five female and fourmale stu-
dents) participated in Experiment I, and nine (five female
and four male students) in Experiment II. The responses
in each experiment were reasonably consistent with
each other, hence no further recruitment was needed.

A participant provided hers/his written informed
consent to participate in this study. The human-subjects
protocol for this study (including the informed consent
document) was approved by the Institutional Review
Board of Boston University.

3.5. Experimental paradigm

Subjects performed the experiments in an isolated office
environment (no other occupants) using headphones.
The sound pressure was adjusted by the subject to a
comfort level and remained unchanged throughout the
experiment. Stimuli were presented diotically. In a
session, subjects heard 7 audio clips – a clip being the
sequence of stimuli concatenated as described in
Section 3.3 (approximately 8 minutes long). They were
instructed to listen to each audio clip uninterrupted and
to type into a text file a 1 or a 0 during the 3-sec long
gap following a target, indicating whether or not the
target was part of the preceded digit string. Subjects
were not informed about the various chunking conditions
and no feedback was provided. A subject participated in
four sessions in completion.

3.6. Data analysis

Depending on the clarity of the emerging error patterns,
data is presented either as the error rate of the raw data,
or as the outcome of a hierarchical logistic regression
used to model the data.

When error patterns of a phenomenon considered are
clear and demand no further quantification, accuracy is
presented as the mean and standard deviation of the
error rate across subjects, plotted as bar charts. Each
bar shows the error rate and the standard deviation8 cal-
culated over 20 responses.

For other conditions, with less obvious data, a detailed
evaluation is performed to assess accuracy in terms of
predictions of a hierarchical logistic regression used to
model the data. The model is derived as follows. Per
stimulus, target identification is defined as xi , with xi=1
when identification is correct and 0 otherwise. Per exper-
iment, the data comprises 9 subjects, each of which was
tested under N conditions, c [ {1, 2, . . . ,N}, with 20
sentences heard under each condition. (For example, in
the upper left panel of Figure 6, per chunking pattern
condition (333, 22222, etc.), ψ is the chunking rate with
N=4, that is, c [ {[2−2.5], [2.5−3], [3−3.5], [3.5−4]}
Hz.) A hierarchical logistic regression was used to
model the data, capturing the effect of each subject
and each condition ψ on target identification. This
approach is conceptually similar to a classical ANOVA
comparison (Gelman, 2005): (a) inferences for all means
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and variances are performed under a model with a sep-
arate batch of effects for each row of the ANOVA table;
(b) the model automatically gives the correct compari-
sons even in complex scenarios; and (c) this is a preferred
approach when dealing with small sample size, as is the
case here with only 9 subjects.

Themodel provides estimates for the average accuracy
at each level of ψ. Instead of simply reporting standard
errors for significance testing, this approach allows the
flexibility of fully propagating the uncertainty inherent
in all pieces of the model (Gelman & Hill, 2007). This is
done through a simulation framework, where the model
estimates are simulated 1000 times. We compute 95%
credible intervals around the accuracy levels at each ψ –
these are the Bayesian equivalent of confidence intervals,
again accounting for the full uncertainty in the model.9

The results plotted are estimates of error rate with the
95% credible intervals, shown as a bar chart, calculated
over 20 responses per bar. Visually, we emphasise the
credible interval around the estimated error rate of c∗

– the reference condition. The estimated error rates of
the surrounding conditions are compared to the esti-
mated error rate of the reference condition, and the
credible intervals indicate whether the differences are
statistically significant.

4. Stimuli and results

4.1. Experiment I: the role of acoustic prosodic
segmentation

4.1.1. Stimulus preparation
Stimuli were generated for a number of conditions speci-
fied by two parameters, chunking pattern and prosody
mode, defined below. Fifteen chunking patterns, listed
in the abscissa of Figure 3, were used. The chunking pat-
terns form regular and irregular grouping patterns, for
example, 22222 (regular) or 424 (irregular).10 For any
selected root string (out of the 100 10-digit root strings
in the vocabulary, see Section 3.2), a prescribed chunking
pattern defines the individual chunks. For example, for
the root string 3762895069 and chunking pattern 442,
the individual chunks are 3762, 8950, and 69. Once a
root string and a chunking pattern were chosen, two
10-digit long stimuli were synthesised, one for each of
two prosody modes, Gapped and Accentuated:

(1) Gapped mode. For the 11111 chunking pattern,11 the
10 single-digit core stimuli were concatenated with a
160-ms long silent gap inserted in between each
digit stimulus. For the 3322 chunking pattern, for
example (e.g. 678 903 21 56), each chunk was syn-
thesised by grouping isolated single-digit core

stimuli as follows. For the first chunk, 678, the three
single-digit core stimuli 6, 7, and 8 were concate-
nated, with a 10-ms long silent gap inserted in
between them. The resulting 4 chunks were then
concatenated, with a 160-ms long silent gap inserted
in between the chunks. The average duration of the
stimuli generated in this mode is 4.32 seconds, with a
standard deviation of 0.46 seconds. The top panel of
Figure 2 shows the resulting stimuli for root string
3323443215 synthesised in a Gapped mode, with a
chunking patterns 3322. Note that a stimulus syn-
thesised in the Gapped mode belongs to the “tem-
poral grouping” condition of Ryan (1969).

(2) Accentuated mode. Stimuli in this mode were gener-
ated by a procedure similar to the Gapped procedure,
with two exceptions: (i) for a given chunking pattern,
each chunk was the corresponding (accentuated)
core stimulus (a doublet, a triplet, etc.), rather than a
chunk created by concatenation. For example, for
the 3322 chunking pattern above, the first chunk,
678, is the core triplet stimulus 678; and (ii) the accen-
tuated chunks where separated by 10-ms long gaps,
rather than 160-ms long gaps. Note the absence of
the chunking pattern 11111 here (no accentuation
for a single digit). The average duration of the
stimuli generated in this mode is 3.51 seconds, with
a standard deviation of 0.27 seconds. The bottom
panel of Figure 2 shows the resulting stimuli (wave-
form and a Fourier spectrogram) for the root string
3323443215 synthesised in the Accentuated mode,
with the chunking patterns 3322. A stimulus syn-
thesised in this mode could be considered as belong-
ing to Ryan (1969) “non-temporal grouping”
condition since no explicit grouping have been
applied. However, an implicit grouping exists,
enforced by accentuation.

Two remarks are noteworthy. First, since the stimuli
were synthesised in normal speed, the average chunking
rate was well inside the delta frequency band (about 0.5–
3 Hz) for all 15 chunking patterns and both prosody
modes. Second, the reason for using two prosody
modes in this experiment stemmed from the need to
expand on Ryan’s distinction between temporal vs.
non-temporal grouping (Ryan, 1969). Although an expli-
cit inspection of a waveform synthesised in the Accentu-
ated mode places it in the non-temporal grouping
category, a question is raised about the possibility of
an implicit temporal grouping via hidden prosody cues
(i.e. accentuations arching over a chunk).

The experimental conditions for Experiment I are
summarised in Table 2.
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4.1.2. Data
Figure 3 shows error rate as a function of chunking
pattern for the two prosody modes. Data are organised
in three panels, one for each target position (inside,
split and no target). The 2- and 3-digit target length con-
ditions were combined. Each bar shows the error rate
and the standard deviation calculated over 20 responses.
For each panel, the mean and standard deviation across
chunking patterns are shown on the left-hand side. Three
observations are noteworthy:

(1) A significant increase in error rate is observed for
target split, compared to that for target inside. This
is the case for all chunking patterns and both
prosody modes.

(2) No chunking pattern “stands-alone”, that is,
no pattern provides a significant advantage in
performing the task. This is the case for any target
position.

(3) A similar error pattern is observed for both prosody
modes, Gapped and Accentuated.

Figure 2. Stimuli used in Experiment I. Shown are waveforms and Fourier spectrograms for the root string 3323443215 with a chunking
pattern 3322 (i.e. with the chunks 332 344 32 15), synthesised in a Gapped (top) and Accentuated (bottom) modes. The gap durations
are 160-ms long for Gapped, and 10-ms long for Accentuated. Note that the chunk waveforms are uncompressed. (MP3 files are avail-
able for listening as Supplementary Materials.)

Table 2. Summary of experimental conditions.
Chunking pattern Prosody mode Chunking rate

Experiment I • a parameter • a parameter • not a parameter
– 15 patterns – gapped – 1–2 Hz
(see abscissa of Figure 3) – accentuated – inside delta range

Experiment II • a parameter • not a parameter • a parameter
– 2 regular patterns – accentuated – 2–4 Hz
– 2 irregular patterns – 4 sub-bands, inside and outside
(see abscissa of Figure 5) delta range (see Figure 5 Legend)
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Since the difference between the target-split error
rate and the target-inside error rate is large, and since
there is no stand-alone pattern, no further statistical
analysis was required to quantify these observations.

Our interpretation of these results will be discussed in
Section 5.

4.2. Experiment II: the role of acoustic delta in
segmentation

4.2.1. Stimulus preparation
Stimuli were generated for a number of conditions speci-
fied by two parameters, chunking pattern and chunking
rate. Four chunking patterns were used: the regular pat-
terns 22222 and 333, and the irregular patterns 3322 and
2233 grouping. For a particular root string (out of the 100
10-digit root strings in the vocabulary, see Section 3.2),

for each [chunking pattern]×[chunking rate] combi-
nation a 10-digit stimulus was synthesised using the
Accentuated mode described in Section 4.1.1. Chunking
rate was controlled by varying the silent gaps inserted in
between the chunks. Eight gap durations were used: 1,
20, 40, 80, 120, 160, 180, 200 ms, providing a gradual
change in chunking rate – in and out of the delta fre-
quency band. Figure 4 depicts the resulting stimuli for
20-ms (top) and 160-ms (bottom) gaps. Chunking rate
(in Hz) is defined as the average of the inverse of
chunk-duration of all chunks in the stimulus, where a
chunk duration is the fragment between the mid
points of two successive gaps (Figure 4, red markers).
For example, the chunking rates of the two stimuli in
Figure 4 are 4.2 Hz (top) and 2.8 Hz (bottom). To be
able to generate stimuli with chunking rates greater
than the upper bound of the delta frequency range

Figure 3. Experiment I data. Error rate as a function of chunking pattern and prosody mode for the three target positions, target-inside
a chunk (top panel), target-split between two successive chunks (middle panel), and no-target present (bottom panel). The 2- and 3-
digit target length conditions are combined. The mean and standard deviation across chunking patterns are shown on the left-hand
side of each panel. A significant increase in error rate is observed for target-split, compared to that for target-inside. This is the case for
all chunking patterns, in both prosody modes. Also, no chunking pattern is preferred.
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(about 3 Hz), chunk (and target) waveforms were time
compressed by a factor of 3 – just below auditory
channel capacity (Ghitza, 2014).12 Figure 4 shows the
resulting stimuli for the root string 1058658263 syn-
thesised in Accentuated mode and chunking pattern
22222, with a 20-ms long silent gap (top) and a 160-ms
long gap (bottom). Note that the waveform of each
chunk is time-compressed by a factor of 3.

The experimental conditions for Experiment II are
summarised in Table 2.

4.2.2. Data
Figure 5 shows the error rate as a function of chunking
pattern, for four bands of chunking rate (2–2.5, 2.5–3, 3–
3.5 and 3.5–4 Hz), three target positions (inside, split and
no target), and the two target lengths (2- and 3-digit-
long). Each bar shows the error rate and the standard devi-
ation calculated over 20 responses. For all [chunking pat-
tern]×[target length] conditions, and for all chunking
rates, errors in the target-split position are considerably
larger than the errors in the target-inside position. No
further statistical analysis was performed to quantify the
significance of this error difference because of its large
magnitude. Note that this observation concurs with a
similar result observed in Experiment I (observation no. 1
in Section 4.1.2).

The error patterns for the target-inside position are
not as obvious and required further quantification. For
this purpose, the statistical analysis described in
Section 3.6 was used. The data – shown in Figure 6 –
are organised in a 3×2 matrix of panels, with target
length as rows and chunking pattern as columns. In
the left column, all chunking patterns are detailed. In
the right column chunking patterns are collapsed into
regular and irregular patterns. For each chunking
pattern condition, estimates of error rate and the 95%
credible intervals are shown as a bar chart, calculated
over 20 responses per bar, with chunking rate as the par-
ameter. The highest chunking rate condition – with the
credible interval around it – is visually highlighted (gray
horizontal strip). (Note that some bars are not valid: (i)
all bars in [chunking pattern 22222]×[target length=3],
because all chunks are shorter than the target, and (ii)
the bar corresponding to the highest chunking rate
(.3.5 Hz) in chunking pattern 333, because such
stimuli can not be generated.)

In general, a consistent error pattern emerges across
panels showing an increase in error rate with the
increase of chunking rate, with a considerable jump in
error rate at the highest chunking rate. The 95% credible
intervals indicate that the differences in estimated error
rates are statistically significant. The magnitude of the

Figure 4. Stimuli used in Experiment II. Shown are waveforms – synthesised in the Accentuated mode – for the root string 1058658263,
with the chunking pattern 22222 (i.e. with the chunks 10 58 65 82 63), with a 20-ms long silent gap, hence a chunking rate of 4.2 Hz
(top), and a 160-ms long gap, hence a chunking rate of 2.8 Hz (bottom). Note that the waveforms within a chunk are time-compressed
by a factor of 3 (MP3 files are available for listening as Supplementary Materials.)
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jump in error rate – and its statistical significance –
depend on [chunking pattern]×[target length] condition.
A few observations are noteworthy:

(1) Bottom-left panel (pooled target lengths). A con-
siderable jump is shown at the highest chunking
rates, for all chunking patterns. In particular, note
the jump magnitude for the regular patterns and
for the irregular 3322 pattern – the pattern the
(American) subjects are mostly used to.

(2) Green bars (that is, rate = [3− 3.5] Hz) for patterns
22222 and 333. When pooled together – to form
the green bar for the regular pattern condition, the
significant difference in error rate between these
conditions is averaged out (top-right and bottom-
right panels).

Our interpretation of these results will be discussed in
Section 5.

5. Discussion

There is a body of work on the effects of chunking on
recall, in various sensory modalities (e.g. visual, verbal).
When recalling a sequence of words from a spoken utter-
ance, listeners set phrasal boundaries to create groups so
as to overcome capacity limitations in STM by partition-
ing the serial input into segments, and by linking the

segments to phrasal units. Two distinct processes are
at play, the contribution of each is hard to isolate: a
bottom-up acoustic segmentation and a top-down con-
textual parsing. The present study focuses exclusively
on acoustic prosodic segmentation. In particular, we
aim at providing psychophysical evidence for the role
of a neuronal acoustic-driven delta oscillation in segmen-
tation. In order to eliminate the effect of contextual
parsing the present experiments used context-free
random-digit strings. The task used – a target ID task –
is suitable for testing the role of oscillations in segmenta-
tion (as reasoned in Section 3.1). In the reminder of this
Section we interpret the results reported in Experiments
I (Section 4.1.2) and II (Section 4.2.2), and hypothesise
possible generalisations of the results to acoustic proso-
dic segmentation of unconstrained continuous speech.

5.1. The role of acoustic prosodic segmentation
(Experiment I)
First, we note the significant increase in error rate for the
target split condition, compared to the error rate in
target inside. This result confirms the benefit in accurate
bottom-up, acoustic prosodic segmentation (in the
chunk level) in word retrieval: for a successful template
matching – an operation at the core of the identification
process (at the tail of a target-ID task) – a proper segmen-
tation of the chunk is essential. This result may also be

Figure 5. Experiment II data. Error rate as a function of chunking pattern for four bands of chunking rate (2–2.5, 2.5–3, 3–3.5 and
3.5–4 Hz), for the three target positions – target-inside a chunk (left panel), target-split between two successive chunks (middle
panel), and no-target present (right panel) – and for 2- and 3-digit target lengths. A significant increase in error rate is observed
for target-split, compared to that for target-inside. This is the case for all chunking patterns and chunking rates, in both target
lengths. This error pattern concurs with the error pattern observed in Experiment I (Figure 3).
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interpreted as an evidence that, in a digits retrieval task, a
single-layer process is in play: chunks (and targets) are
retrieved as whole objects, as opposed to an item-by-
item retrieval process, as Miller (1962) posited.

Second, no stand-alone chunking pattern was
observed. As long as chunking rate is within the cortical
delta frequency band (about 0.5–3 Hz) – the case for all
15 chunking patterns tested here – a perception

Figure 6. A quantified version of the target-inside condition in Figure 5, derived by the data analysis described in Section 3.6. (Note the
different scaling of the ordinate compared to Figure 5.) In the right column chunking patterns are collapsed into regular and irregular
patterns. For each chunking pattern condition, estimates of error rate and the 95% credible intervals are shown as a bar chart, with
chunking rate as the parameter. The highest chunking rate condition – with the credible interval around it – is visually highlighted
(gray horizontal strip). Across panels, error rate increases with the increase of chunking rate, with a considerable jump in error rate
at the highest chunking rate. The 95% credible intervals indicate that the differences in estimated error rates are statistically significant.
The magnitude of the jump – and its statistical significance – depend on the [chunking pattern]×[target length] condition. Note that
some bars are missing – see reasoning in text (Section 4.2.2).
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tolerance to chunking pattern emerges. Notably, our
data do not show a meaningful advantage for grouping
in threes, as shown by others (e.g. Chen & Cowan, 2005;
Gilbert et al., 2014, 2015; Maybery et al., 2002; Reeves
et al., 2000; Ryan, 1969; Wickelgren, 1964). An interesting
corollary to this observation concerns the manner by
which telephone numbers are chunked in different
countries. In all languages, at normal speech-speed the
chunking rate is inside the cortical delta band. If we
assume same delta band across gender and race
(indeed species; e.g. Buzsaki, Logothetis, & Singer, 2013)
this result suggests that chunking strategy is of cultural
consequence rather than the result of a need to match
a cortical constraint. Interestingly, for our American
listeners – educated in the USA with English as their first
language – the pattern 3322 (the one used by Americans)
was not advantageous.

Third, a similar error pattern for both prosody modes,
Gapped and Accentuated, was observed. This result
suggests that hidden prosody cues – accentuations
arching over a chunk – result in grouping with a
benefit equivalent to the benefit gained by explicit tem-
poral grouping (i.e. by inserting gaps). Robust acoustic
correlates to the accentuation arch, however, are yet to
be discovered.

Finally, performance in the no-target condition is a
measure of the degree of guessing by the subject. The
results in the no-target condition confirm that guessing
is uniform with chunking pattern.

5.2. The role of acoustic delta in segmentation
(Experiment II)
Similar to what was observed in Experiment I, a signifi-
cant increase in error rate is registered for target
split, compared to the error rate in target inside. This
data reenforces the corresponding interpretation in
Section 5.1, that is, that a proper segmentation of a
chunk is essential for digit retrieval.

Importantly, Experiment II also provides behavioural
evidence for the role of acoustic delta in segmentation.
For target inside, error rate moderately increases with
the increase in chunking rate, with a significant jump
for chunking rates greater than the upper bound of the
delta frequency band (about 3 Hz). This data supports
our hypothesis that a successful segmentation is possible
only if the chunking rate complies with the range of delta
frequencies. From time compression studies (e.g.
Ghitza, 2011; Vagharchakian, Dehaene-Lambertz, Pallier,
& Dehaene, 2012) we know that a reliable retrieval
requires a sufficient decoding time. Extra decoding
time, if needed, can be provided by the insertion of
silent gaps. As was shown before (e.g. Ghitza, 2014;

Ghitza & Greenberg, 2009), at the syllable level, the
decoding time necessary for a reliable decoding is deter-
mined by theta. We postulate that the gap duration that
ensures reliable retrieval of chunks is determined by
delta: the duration of “the chunking cycle” – the concate-
nation of the chunk and the following gap – must be
greater than a threshold cycle duration, equals the
inverse of the upper bound of the delta frequency
band (�330ms).

Three remarks are noteworthy. First, performance is a
reflection of the role of prosodic segmentation, in iso-
lation from syllabic segmentation. This is so because
the acoustics inside a chunk is unchanged for all chunk-
ing rates ⇒ the syllabic rate inside a chunk is the
same for all chunking rates ⇒ the predicted cortical
theta, locked to the input syllabic rate, is the same for
all chunking rates. Second, performance is a reflection
of the role of acoustic delta, in isolation from context-
invoked delta, because the study was confined to the
task of digit retrieval when listening to digit strings – a
material with no context. Third, a question may be
raised about performance when chunking rate is
slower than the lower bound of the delta range (�0.5
Hz). The reason to skip the effects of time dilation
stemmed from the fact that memory decay time –
about 2 sec long (e.g. Cowan, 1984) – roughly coincides
with the lower bound of the cycle duration in delta band.
Consequently, although a deterioration in performance
is predicted, the dominant function at the origin of
such deterioration may very well be one of immediate
memory span rather than prosodic segmentation.

5.3. Generalisations

We argue that the neuronal mechanism proposed here –
even though tested on digit strings –may be generalised
to continuous speech free of linguistic constraints. When
listening to everyday speech, intelligibility remains high
as long as the delta oscillator is in sync with the input
chunk rhythm, in analogy with the now reasonably
established observation that, for intelligibility to remain
high, the theta oscillator must be in sync with the syllabic
rhythm (e.g. Doelling et al., 2014; Ghitza, 2012, 2014).
When synchronisation is maintained, a delta cycle is
aligned with a speech segment corresponding to a
chunk.

Four remarks are relevant here. First, although syllable
rate indeed display a peak in the theta range, it varies
considerably inside the theta frequency range.13 Since
the theta oscillator must stay synchronised with the
input rhythm, such syllable rate distribution supports
the argument for a flexible theta mechanism. Whether
rhythm variations at the phrasal level are sufficiently
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regular for a flexible delta mechanism to drive a reliable
segmentation process is yet to be rigorously quanti-
fied.14 Second, as already reiterated, we hypothesise
that in order to secure a reliable performance the acous-
tic-driven delta oscillator must stay synchronised with
the chunk rhythm. If this hypothesis holds a prediction
about comprehension can be made, namely that
reduced accentuation should lead to reduced compre-
hension (due to difficulties to stay in sync with the
chunk rhythm). Third, a prerequisite for robust tracking
is that the cochlear output contains robust information
on chunk rhythm, and that there exists a neuronal mech-
anism – with a flexible oscillator at the core – that can
(easily) lock to the chunk rhythm. (One possible mechan-
ism may be a neuronal PLL circuit, for example, Ahissar
et al., 1997; Zacksenhouse & Ahissar, 2006.) And fourth,
TEMPO suggests that the theta oscillator plays a crucial
role in extracting syllable objects (Section 2.1), and that
the sequence of syllable objects is integrated to form
phrases, delta cycle long (Section 2.2). The need for
such coordination may suggest that the theta oscillator
is nested within the acoustic-driven delta. Addressing
the nature of the nesting – including the consequences
of the resulting delta/theta interaction – is beyond the
scope of this study.

Recalling the assertions by Miller (1962) – that the dur-
ation of the decision unit is about 1-sec long – and by
Pickett and Pollack (1963) – that in read passages and in
ordinary conversation a window of at least 1 second is
required to reliably decode words, irrespective of the
number of words presented – we notice that a 1-sec long
window corresponds to a 1-Hz oscillation, at the centre of
the delta frequency range. We suggest that the emergence
of a 1-sec long window as a “sweet spot” is the result of an
underlying segmentationmechanismwith delta at the core.
Noticing that a phrase of about two or three words is about
1-sec long, we further suggest that the commonly reported
superior performance for grouping of about three words is
also determined by the same segmentation mechanism.

Finally, adopting the view that the strategy of com-
posing words into phrasal units is the result of an evol-
utionary trajectory to match a cortical function, we
hypothesise that the phrasal structure of language is
constrained by delta oscillations. Rules of chunking in
speech production may be the product of common cor-
tical mechanisms on both motor and sensory sides, with
delta at the core. This hypothesis is in line with the
hypothesis put forward by Martin (2012).

6. Summary

This study provides psychophysical evidence for the
importance of acoustic prosodic segmentation – in

distinction from contextual parsing – in securing a
reliable digit retrieval. Importantly, the data show that
in order to maintain high level of performance, the
phrasal rhythm of the input should be within the delta
frequency band (about 0.5 to 3 Hz), giving rise to the
possibility of an underlying segmentation mechanism
with acoustic-driven delta oscillations at the core. The
data show that performance is high for a variety of
chunking patterns as long as the chunking rate is
inside the delta frequency band, confirming the possi-
bility that chunking strategies of telephone numbers in
different languages are of cultural consequence, rather
than the result of the need to match a cortical constraint.
The data also show that hidden prosody cues – accentua-
tions arching over a chunk – result in grouping with a
benefit equivalent to the benefit gained by explicit
temporal grouping (i.e. by inserting gaps). We argue
that these findings can be generalised to continuous
speech free of linguistic constraints, and that the
phrase structure of language is constrained by cortical
delta oscillations.

Further neuroimaging experiments will be needed in
order to validate our hypothesis. No hypothesis about
internal physiological processes can be fully validated
using only psychophysical methods, and the data
reported here establish a psychophysical context for
neuroimaging experiments that should use a compar-
able task.

Then there is the questioning of the brain substruc-
ture origins of the hypothesised functions. There is no
reason to believe that there is merely one type of delta
band response, so there will be no one-size-fits-all
answer. Insofar as one can experimentally restrict or
control the stimuli to elicit acoustic segmentation at
the level a phrase, that contribution to delta would be
expected to be primarily associated with auditory cortical
regions. Aspects of the delta band response that might
be associated with contextual aspects of processing,
including working memory, grammatical predictions,
etc. are likely to have substantial non-auditory contri-
butions, including from frontal regions. The question
will need to be addressed through careful manipulation
of the materials, task, and through subtle source recon-
struction from neuroimaging data.

Notes

1. The core is a vocabulary of “Lego” speech segments from
which the stimuli presented to the listeners were syn-
thesised, by concatenation.

2. A phrase is meant to be a group of words roughly 1-s
long – not necessarily a sentence.

3. When attending to time-compressed speech listeners
experience insensitivity to moderate time scale
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variations; deterioration in intelligibility for compression
factors beyond 3; and a recovery of intelligibility by
repackaging (e.g. Ghitza, 2014; Ghitza & Green-
berg, 2009), where “repackaging” is a process of dividing
the time-compressed waveform into fragments, called
packets, and delivering the packets in a prescribed rate.

4. Which acoustic landmarks drive the flexible theta oscil-
lator? Two options have been considered, yet to be
vetted: (i) CV boundaries (“acoustic edges”), and (ii)
vocalic nuclei (“mid vowels”). Here, the vocalic nuclei are
preferred because of robustness considerations: in the
presence of background noise the “islands” of reliable
acoustics are the mid vowel regions (Ghitza, 2013).

5. The theta-syllable (Ghitza, 2013) is a discrete speech-
information unit defined by cortical function. Its acoustic
correlate is a theta-cycle long speech segment located in
between two successive vocalic nuclei. As such, a theta-
syllable is aligned with a VCV cluster.

6. This match can be viewed as a synchronisation between
the amount of information in the input stream and the
necessary decoding time in the pre-lexical level, deter-
mined by the flexible theta oscillator (Ghitza, 2011).

7. The AT&T-TTS system (http://www.wizzardsoftware.com/
text-to-voice.php) uses a form of concatenative synthesis
based on a unit-selection process, where the units are cut
from a large, high-quality, pre-recorded natural voice
fragments. The system produces natural-sounding,
highly intelligible spoken material with a realistic proso-
dic rhythm – with accentuation defined by the system’s
internal prosodic rules – and is considered to have some
of the finest quality synthesis of any commercial product.

8. The standard deviation here is the square root of the
unbiased estimator of the variance.

9. Because these simulations are not simply standard error
calculations, the credible intervals are not restricted to be
symmetrical around the mean, as can be seen under
close inspection of the data later on.

10. To illustrate our notation of chunking pattern, the root
string 3762895069, for example, can be chunked into
the regular chunking pattern 22222 [37 62 89 50 69],
or into the irregular pattern 3322 [376 289 50 69], etc.)

11. If we were to be consistent with our notation, a 111 · · · 11
(a sequence of ten 1’s) should have been used. Alas, we
use the shorthand 11111, instead.

12. Time compression uses a pitch-synchronous, overlap and
add (PSOLA) procedure (Moulines and Charpentier, 1990)
incorporated into PRAAT (http://www.fon.hum.uva.nl/
praat/) – a speech analysis and modification toolbox. In
the time-compressed signal, the formant patterns and
other spectral properties are altered in duration;
however, the fundamental frequency (pitch) contour
remains the same (this is the motivation for using
PSOLA methods).

13. This is so across languages.
14. Preliminary data suggest that this indeed is the case (Lib-

erman, 2016a, 2016b; Ryant & Liberman, 2016).
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